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non-standard features. Networks trained on a large corpus of unsegmented, continuous speech without
labels also developed interesting feature representations that may be useful in both segmentation and
label learning. The results of these studies, while preliminary, demonstrate that back-propagation
learning can be 'used with complex, natural data to identify a feature structure that can serve as the
basis for both analysis and non-trivial pattern recognition. These findings can make a significant

* contribution to the long-standing problems of speech feature decomposition and computer-based speech
recognition.



Learning the Hidden Structure of Speech

JEFFREY L. ELMAN and DAVD ZIPSER

INTRODUCTION

The recognition of speech is one of many things that is carried out by humans with apparent ease,
but that has been done by computers only at great cost, with high error, and in highly constrained situa-
ions. Whether or not one is interested in machine-based speech recognition per se, the difficulties
encountered by such systems may be diagnostic of flaws in the theoretical frameworks that motivate
them. We believe that part of the difficulty in such systems lies in the use of inappropriate features as
units for recognizing and representing speech. But what are the appropriate units and how are they to
be found? In this paper we describe studies designed to determine whether these units can be learned.
We use a newly developed learning procedure for artificial neural networks. This approach not only
provides a way to learn to recognize speech, but also enables the required computations to be carried
out in parallel in a brain-like fashion.

The question "What are the units of speech perception?" has been long-standing and controversial.
The problem is that when one looks at the acoustic waveform, there are rarely obvious clues as to the
boundaries between segments, let alone an indication of what those segments are. The speech sound
wave varies continuously and smoothly over time. There is nothing mysterious or unexpected in this; it
is the acoustic consequence of the fact that the production of speech involves a high degree of coarticu-
lation (i.e., the mutual influence of neighboring sounds) with smooth transitions from one sound to
another.

While one has the impression that speech is made up of concatenated "sounds," just what those
sounds are is debatable. At least eight different levels of representation have been proposed to inter- '-

vene between the speech wave and the representation "word": spectral templates (Lowerre, 1976),
features (Cole, Stem, & Lasry, 1986), diphones (Dixon & Silverman, 1976; Klatt. 1980), context-
sensitive allophones (Wickelgren, 1969), phonemes (Pisoni, 1981), demisyllables (Fujimura & Lovins.
1978), syllables (Mehler, 1981), and morphemes (Aronoff, 1976; Klatt, 1980). While these are all rea-
sonable candidates for representing speech, the problem is that they have not been derived, in a canoni-
cal way, from the speech data itself. Learning provides a systematic way to find recognition features in
data.

Whether or not the representations used in the perception of speech are innate or learned remains
open, and we do not wish to take a strong position on this issue. However, much of the motivation for
supposing that internal representations in perception are innate has come from the apparent poverty of
data and the weakness of learning algorithms. Recent developments in parallel distributed processing
(PDP) learning algorithms have demonstrated that a surprisingly small amount of data may contain suf- .. ,
ficient cues to its intrinsic structure so that rather simple learning rules can be used to induce this

% . .* -%."
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2ELMAN and ZIPSER

structure. In the current paper we attempt to demonstrate the consequences of requiring that representa-
tions be learnable. To do this we have taught trainable networks a series of speech recognition tasks
and then examined the internal representations that are generated. The networks are extremely adept at
solving the recognition tasks. They spontaneously develop their own representations which sometimes,
but not always, correspond to our previous categories of representational units.

BACK PROPAGATION OF ERROR

In these studies we use a form of the "generalized delta-rule" known as "back propagation of error"
(Rumeihart Hinton, & Williams, 1986). This algorithm provides a technique for training a multilayer
network to associate many pairs of patterns. The complete set of pattern pairs to be learned can be
thought of as the extensional definition of a vector-valued function whose domain is the set of input
patterns and whose range is the the set of outputs.

As learning schemes become more powerful, the set of functions that can be learned increases. For
example, the perceptron convergence procedure (Rosenblatt, 1962) can program networks to compute
linear Boolean functions such as AND and OR but not nonlinear ones such as XOR. The early gererali-
zations of the perceptron rule that extended the learning set to patterns with continuous rather than
Boolean values are also limited to learning linear functions. Back propagation, on the other hand. can
program multilayer networks to compute all the Boolean functions. Since it is applicable to patterns
with continuous component values, back propagation can also deal with a much wider range of func-
tions.

Much of the significance of back-propagation learning stems from the fact that it is defined on a
neural-like network. An example of such a network is shown in Figure 1. The output of each unit is a
function of the weighted sum of its inputs. It is these weights that are changed as learning proceeds.
Each layer in the back-propagation network can have any number of units. In the work described here
only strictly layered networks are used in which each unit in a layer receives inputs from every unit in
the layer below. Training proceeds in cycles. In each cycle a pattern pair is chosen from the function
definition. The input patter is applied to the first layer of the network, and the activity it generates is
passed successively to the other layers until it produces a pattern of activity on the output layer. This
output pattern vector is then subtracted from the correct output pattern to produce an error pattern. This
error in turn is used to adjust the weights in the output layer and then (by back propagation) to adjust
the weights in lower layers. The exact way the error is propagated back down through each layer con-
stitutes the novel part of the learning rule. Discovering just how to do this correctly was the significant
accomplishment of Rumnelhart, Hinton, and Williams (1986). The details of their procedure, which we
have used in this work, are given in the caption of Figure 1.

When computations are programmed inductively in this manner, values from the range of the func-
tion must be available. Frequently these values are supplied by an external source or "teacher," which
assumes that such a teaching input is available: however, in certain situations, this assumption may be
an unrealistic. This raises the question of how to configure a system so it can learn, either without an
external teacher or with the kind of information more realistically available. Several solutions have
been proposed. One of the simplest and most elegant of these is to use teaching patterns that are the
same as the input or some fixed transformation of the input. While this would seem to limit us to
learning the identity function (or some fixed transformation of it), it has been shown that with this pro-
cedure the hidden units learn to represent the input patterns in terms of salient features. When the
number of hidden units is less than the number of input units, the information in the input is
represented at a lower dimensionality. In many perceptual problem this lower dimensional feature
representation is just what is needed as a basis for further processing. We use this approach in some of
the speech recognition ,tudies reported here.

.................%-... . . .
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FIGURE 1. Strictly layered back propagation networks of the kind depicted in this figure were used for all the work descnbed in
this paper. Before training begins, all the weights and biases are set to random values between -1.0 and 1.0. At the beginning of
each learning cycle, i.e., at time = 0 for that cycle, the pattern generator provides an input pattern (x, x 2 .. x.) and a target pat-
tern (Y Yz Yi)- At time I - I the outputs of the input units are set equal the input pattern. that is: I1 =x1 ,
12 - x,... 1, - x. The output activities of the hidden units are set at time - 2 to

j-k

Hi (04.1) - squash(buasm +s T, l (0)j*j-t ,

where

squash (X) - 1
+ e t"

Similarly, the activity of the output units are set at 1 3 to

Oi (t+l) = squash(biaso. W O i j 
H (t)).

All these values are held constant until the end of the current learning cycle. The next step is to change all the weights and
biases according to the back propagation rule. At - 4 the output unit weights are changed by the rule

AWo, j - 718o, Hj .

Abia-so = oTj80

So. - i - 0)0 (1- 0)

T- learning rate constant.

At f - 5 the hidden unit weights am ame changed by %

Ab,, - T ly I,

For the derivation of these rules see Rumelhart, Hinton, and Williams (1986).
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PRELIMINARY CONSIDERATIONS

Before back propagation could be used to recognize speech it was necessary to find a way to present
the sound to the network. The speech signal itself changes with time but the networks require fixed
input and target samples. The approach we used here was to present the learning network with fixed
input patterns each of which consists of a set of sequential samples. In some cases the individual sam-

* pies in the input pattern were Fourier amplitude spectra; in other cases the actual digitalized sound
samples were used. Prelimninary studies were carried out to find the workable ranges for the number of
frequencies and the amount of time that had to be represented in the input samples.

Another consideration was the way to normalize this data. The dynamiuc range of the Fourier spectra
is large, and the vast majority of the points have very low values. We found that certain versions of
the learning procedures had difficulty with this type of input, consisting of a vast sea of near zero
values with a few high peaks. The situation was further complicated by large amplitude differences
between examples of the same sound.

We used two different strategies in preprocessing the input data. One strategy involved finding ad
hoc methods to deal with the problems raised by the amplitude and dynamic range. The other strategy
was to train a network to do the preprocessing itself. Details of these strategies will be given later.

DIRECT LEARNING OF PHONETIC LABELS

In our first series of studies we asked how a back-propagation network might solve the problem of
learning to label a set of highly confusable syllables. The basic idea was to use a spectrogramn of a
sound as the input pattern and a target bit pattern with one bit position for each of the types of sound.
The task of the network was to learn to set the output unit corresponding to the sound type of the input
to 1, while setting all the other output units to zero. We chose the syllables [ba], [bil, [bul, [da], [di],
[dul, [gal, [gil, and [gu] because this set of three voiced stops, paired with each of three vowels, is

*known to exhibit a high degree of variability due to coarticulation. Although listeners readily report all
*versions of (for example) the [d] as sounding the same, the acoustic patterns corresponding to the con-

sonant differ greatly across the three vowel contexts. Indeed, this represents the paradigm case of per-
ceptual invariance coupled with acoustic variability.

The stimuli for the experiment were prepared as follows. A single male speaker recorded a set of
505 tokens of the set of nine syllables (about 56 tokens of each syllable). Tokens were recorded in a

* moderately quiet environment, but with no particular effort at eliminating background noise; nor was an
attempt made to ensure a constant rate of speech or uniformity of pronunciation. Recording was carried

* out through analog-to-digital conversion at a 10 k.Hz sampling rate and low-pass filtered at 3.5 kl-z.
The beginning of each consonant was located and an FFT analysis was carried out over 6.4 ms

frames, advancing 3.2 ms. per frame for 20 frames. The output of the ITT was reformatted to give
spectral magnitudes over 16 frequency ranges. As a result, each token was represented as a 16 x 20
array of positive values. Finally, these ITT magnitudes were normalized to the token average and
"squashed" using the logistic. Examples of the resulting values for several tokens are graphed in Figure
2.

The network used consisted of 320 input units. between two and six hidden units (in different condi-
tions), and as many output units as there were types to be labeled. The network used here and
throughout this work was strictly layered; i.e., every unit c'f the input and hidden layer was connected to
every unit on the layer above.

The data set of sounds was divided into two equal parts. One was used for training and the other
was kept for testing performance on untrained examples. On each cycle of the teaching phase the fol-
lowing occurred: (a) One of the syllables from the training set was selected at random and applied to
the input layer; (b) activation was propagated up from the input layer to the hidden layer, and from the
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FIGURE 2. Graphs of examples of the nine sounds Jal, [bil, [bul, [dal, [dil, [dul, [gal, [gal, [gil, and [guI. To generate this data -
the release of each stop was located under computer control, and syllables were edited to include 5 ms before the release and suffi-
cient time following release to allow 64 ms of FFT. A 64-point FFT was carried out over Hamming-windowed frames, advancing
32 points per frame. Each token consisted of an array of twenty 3.2 ms frames; within each frame the FFT output was reformatted
to give spectral magnitudes over 16 evenly spaced frequency ranges, then normalized to the average for the token. These values
were then transformed using the logistic function y=I/(1 - "  This procedure maps all values to the range 0 to 1, and the
average to about 0.46. Since the median for the amplitude spectra is generally just a bit greater than the average this procedure .
guarantees that about half of all values are mapped to each side of 0.5, which is beneficial for back-propagation learning.

hidden layer to the output layer; (c) the error for each output unit was calculated and back propagated
through the network, ard the weights were adjusted according to the learning rule.

The trained network was tested by scanning through all members of the training and naive data sets.
The result for a token was scored as correct only if the value of the output unit that should be 1 was
greater than 0.5 and the values of all the other output units were less than 0.5.

Three versions of simple phonetic labeling were run. In one, nine labels were used, corresponding to
the nine sound types. In the other two, three labels were used, corresponding either to the three vowels
(ignoring the consonant in the same syllable) or else to the three consonants (ignoring the vowels). In
all cases more than 100,000 training cycles were run. This extensive training was used because we
were interested in ultimate performance.

In all three versions, the networks always were able to learn to label the training set perfectly; that is,
there were no errors in the classification of either sound type (the syllable, the vowel, or the consonant).
When presented with the data from the naive set, the network trained to label whole syllables made an

-- - . 2 . . . . . . . . . . . . . - . • - . . - . . . . . -. . - . - - . . . .. . -



6 ELMAN and ZIPSER

average of 16% errors. The networks trained to label vowels and consonants made an average of 1.5%
and 7.9% errors, respectively. The results for the vowels and consonants were about the same whether
two or three hidden units were used.

We found that the performance could be improved by introducing certain kcinds of noise into the
samples. Simply adding random noise to the inputs degraded performance. However, if the samples
were distorted by adding noise proportional to each value, performance was significantly improved.
This random distortion was accomplished by replacing each input value x by (x + xr), where r is ran-

* domly chosen from the range -0.5 to 0.5. When tested without noise the training sets still learned per-
fectly. On naive data, the performance for syllables, vowels, and consonants was 10%, 0.3% and 5.0%

* errors, respectively. This means that a recognizer based on vowels and consonants would have an accu-
racy of about 95%.

There are several reasons why training in noise should increase the model's ability to generalize.
First, the noise effectively expands the data set; each syllable is represented by a larger number of
exemplars. Second, and probably more important, the introduction of noise helps to blur stimulus
ideosyncracies that might be learned in place of the phonetically valid features. This results in greater
error during the teaching phase, but better generalization.

Now let us turn to the hidden units. They restructure the input patterns in such a way as to provide
input for the final (output) layer. In the process of carrying out this mapping, they encode the input
patterns as feature types. One can ask what sorts of features become represented in the hidden units as
a result of the teaching phase. These internal representations may provide a clue as to how the
phonetic categorization is accomplished.

In order to visualize the relationship between hidden unit activity and input sound type we used a
technique that displays the average activity of each hidden unit at a different spatial position for each
sound type. Examples of the hidden unit activity patterns obtained in this way are shown in Figure 3.
Every hidden unit has become absolutely correlated with a subset of sound types. Hidden units have
outputs of 1 for some sound types in this set and 0 for others. In addition some hidden units produce a
wide range of output values for tokens not in the absolute correlation set. The correlation subsets can
be vowel-like or consonant-like, in that a unit is completely on or completely off for some consonant or

* vowel. In the example illustrated for the nine label case, for example, two of the hidden units are
* vowel-Like and two consonant-like. Not infrequently a unit cleanly represents a single vowel or con-

sonant in its on activity. It is interesting that each time the learning procedure is rerun, using different
random initial weights, a different pattern of hidden unit correlations is observed. However, while
several unit patterns occur often, some never appear at all. For example, no hidden unit has ever been
found that that represents the [u] sound alone by an on unit. This contrasts with [a] and [ii which can
be so represented.

Another version of label learning was carried out in which a larger number of phonetic labels was
employed, reflecting a finer-grain phonetic analysis. Each of the nine syllables was divided into a con-
sonantal portion and a vocalic portion. The consonantal stimulus corresponded to the first 32 ms of the
syllable (starting 5 mis before release of closure) and the vocalic stimulus corresponded to the 32 ms of
the syllable that occur 150 ms after the release of closure. This yielded 18 new stimuli. Each of the 18
stimuli types was given its own digital label, with labels randomly assigned to nine-bit codes. A net-

* work consisting of 320 input units, 6 hidden units, and 9 output units was trained on 1,000.000 learning
cycles of these 1010 (505 x 2) stimuli.

The correlations between hidden unit activity and sound type is displayed in Figure 4. There are 6
columns, corresponding to the 6 hidden units, and 18 rows, corresponding to the 18 stimulus types.
The phonetic segment is indicated by an upper case letter, and its context by a lower case letter. Thus,
'Ba' refers to tokens of a voiced bilabial stop, extracted from the syllable [ba]; whereas "dl' refers to
tokens of a high front vowel, extracted from syllable [di].

Figure 4 allows us to look at the internai representation that has been developed in order to encode
the 1010 tokens as 18 phonetic types. The representation is interesting in several respects. First, we
see that one hidden unit (Unit 4) is always on for the first nine types, and off for the last nine types. It
thus serves as a Consonant/Vowel detector. Note that the learning task has not explicitly required that
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FIGURE 3. Panels A-E display hidden unit response patterns for different versions of the back propagation phonetic labeling net-
works. Each column shows the behavior of a single hidden unit for all nine sounds. The activity of the units is coded in the
degree of darkening of the rectangle associated with each sound. A completely black rectangle indicates a unit with average activity
of about 1.0 for that sound. Likewise a white rectangle (not delinead against the background) indicates an average activity near
0.0. The shaded rectangles indicate intermediate average activities. Panel A is from a four hidden unit network trained with nine
labels signifying syUables. Panels B and D are from networks trained with three vowel labels, while C and E were trained to
recogize three consonann..
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FIGURE 4. A graph of the hidden unit activity associated with each of the 18 speech inputs. Each column shows the behavior of
a single hidden unit for all 18 speech sounds. Upper case letters indicate which portion of a CV syllable was presented (consonant
or vowel); lower case letters indicate the context.

this distinction be drawn. The network has simply been asked to learn 18 phonetic labels. It happens
that the Consonant/Vowel is a useful dimension along which to classify types, and this dimension is
implicit in the stimuli. In other cases we see that it is not as easy to interpret single hidden units by
themselves. When both Unit 2 and Unit 4 are on, a velar stop (Ga, Gi, Gu) is signaled; otherwise, the
vowel [i] is indicated.

One very striking result is the response pattern for Unit 0. This unit is always on (and only on) for
the alveolar stops (Da, Di, Du). What makes this so surprising is that the alveolar stops exhibit a great
deal of acoustic variability across different vowel contexts. The task simply required that the network
learn labels for the three different alveolar allophones; it was not required to group these together in
any way (indeed, there was no feedback that informed the network that any relationship existed
between these three types). Nonetheless, the network has spontaneously determined a representation in
which these allophones are grouped together.

The weights connecting the input to the hidden units are a kind of filter through which the sound
stimuli pass to determine hidden unit activity. The shape of this filter is indicative of the sound
features recognized by the hidden units. Examining these weight profiles can give us some understand-
ing of these features. Figure 5 shows graphs of the input weights for hidden units with outputs at I for
only a single sound or a pair of sounds. In the column on the left, the weights for several vowel-

"--. " ' --•. .":'--- ,- " ---' ,-' ' .-- -*. " "-.. -':--" '- -* .-- . p- -v, -- ---- --- -------- - ---- ?- 4 -" " . -'-' " : ' - -- '-
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FIGURE S. These an graphs of the weights connecting the input sound aray to the hidden units. Each graph represents a single
hidden unit. The weights are plotted at positions that correspotd to the frequency and time of their anached input. The format of
time and frequency in these graphs is the same as in Figure 2. The hidden units ae all from networks trained to recognize either
vowels or consonants. The hidden units are on only for the sounds indicated in the lower right-hand comer of each graph. The left
hand column has complete graphs. The other two columns have flood graphs, representing only that portion of the graph above a
high tide of 0.7 the whole range of weight values. All values below the high tide value am set to the high tide value. The center
column is based on the same data as the one to the left. The complete graphs for the right-hand column am not shown.

recognizing units are depicted. The patterns are very complex and little can be gleaned from them. In
the next column a more interpretable "flood" plot of the same data is shown; the flood plot shows only
those peaks above some "high tide" level. The important differences between the weight arrays become
apparent, showing some of the basis for distinguishing between the various sounds. The last column on
the right is a flood plot of some consonant-recognizing units. The flood plots of the vowel-recognizing
units and the consonant-recognizing units reveal only part of the story. The negative peaks are also
important in the recognition process. And the importance of the finer scale structure of the weight
matrix is not yet known.

Results from these studies of phonetic label learning indicate that this approach has considerable
power and can be successful even given a highly confusable set of stimuli. Furthermore, the back-
propagation technique results in internal representations that have interesting properties.

One important difficulty with this approach is the origin of the phonetic labels. The direct teaching
technique requires that for each speech stimulus the correct label be known. It would seem desirable
not to have to make this assumption. For example, from the viewpoint of child language acquisition we
are put in a bit of a teleological quandry if we must assume that children know the labels of the sounds
they are learning, before they learn them. This consideration led us to investigate identity mapping as a
way to learn phonetic features.

.....................................
** ** **o - ,, %
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IDENTITY MAPPING OF SPECTROGRAMS

In the previous study, the input and output patterns were different, the input was a known speech
stimulus and the output was its abstract phonetic label. This interpretation of input and output are nei-
ther available nor necessary to the operation of the learning algorithm. It is simply learning a function
that relates two patterns. One can apply the learning algorithm in a different mode in which the input
and output pattern are the same. This mode, which we call identiy mapping (it is also known as auto-
association [Ackley, Hinton, & Sejnowksi, 1985]), does not require an external teacher. Identity map-
ping a large pattern via a layer of a few hidden units has been shown to yield useful internal representa-
tions that give explicit information about the structure of the input patterns (Cottrell, Munro, & Zipser.
in press; Zipser, in press). We have used identity mapping with the same sounds described above to
see if useful internal representations can be learned in the absence of a pnon knowledge about the
"meaning" or "names" of patterns. We find that the hidden units in identity mapping come to represent
both previously identified speech features and new, not easily described, features.

The stimuli for this experiment were identical to those used in previously. They consisted of 505
tokens of the nine consonant-vowel (CV) syllables, represented by normalized and squashed power
spectra. The network had 320 input units, between 2 and 10 hidden units, and 320 output units. The
training phase was similar to the labeling studies, except that the target output pattern was always ident-
ical to the input pattern.

In Figure 6A we see an example of the hidden unit activations that developed after about 150,000
learning cycles. Unit 3 is a vowel unit since it is strongly on for all [a] and off for the other vowels.
Units 2 and 4 are consonant-like units since they are on quite strongly for two consonants and off for a
third. Unit 3 is vowel-like but encodes some consonant information also. Units 5 and 6 cannot be
characterized in terms of vowels and consonants; they represent some feature that is not easil%
described.

Different hidden unit activation patterns are obtained on each independent run of the same learnig
problem, but the same general kinds of hidden units are found- Sometimes hidden units represent a sin-
gle vowel or consonant. More often they represent a strongly correlated encoding of mixed sound types
as is the case with Unit 1. Units like 5 and 6, which recognize some enigmauc feature are also quite
common. In general, the fewer the number of hidden units, the more strongly correlated with sound
types they become.

While the identity mapping network we have described was trained on speech that was not phonet
cally labeled, the speech tokens had been laboriously presegmented into syllables. It occurred to us that
the identity mapping network might be able to segment continuous speech. The reason this might be
possible is that error would be expected to be at a minimum when the sounds used for training Aere in
register on the input units. These error minima would then signal the boundaries between syllables.

To test this possibility we synthesized a pseudo-continuous speech by stringing together examples ot
the nine sound types in random order and shifting this sequence through the input one ume-step per
cycle. This resulted in an stimulus that had a complete sound token correctly in register with the nput\
only once every 20 cycles. On all the rest of the cycles the input consisted or part of the end of one
token and part of the beginning of another. Networks that had been fully trained to idenurir mrp
presegmented sounds were used for this study, but their learning mechanism was turned off. On each
shift cycle the total error was computed. (This error is just the sum-squared difference between the

*' input and output patterns.) The results are shown in Figure 6B.
The error signal has a clear periodic component, decreasing to an identifiable minimum each time a

single token is in register with the input. The reason for this is that when a CV syllable is in svnc. the
network "recognizes" one of the input patterns it has been trained previously on This results in lo\A
error. On the next testing cycle, the shifted input pattern still resembles one of the learned pattern's ',

error is relatively low, but as the shifting stimulus gets increasingly out of registration, the emir

I Kohonen. Rittinen, and Haltionen (1984) have used a similar scheme in their speech recognition %stem
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FIGURE 6. k Hidden unit response patterns from a network that had been trained to identity map the nine syllables listed on the
left side. The average acivity values are encoded in the same way as in Figure 3. B. Strip-chart-like plots of the total error from %
an identity mapping network as sound tokens are continuously shifted through the input space as described in the text- The net-
work is the same one whose hidden unit acuvities are shown in A above. The "<" marks indicate times when syllables are in regis- .% ; -

ter in the input space. The lower panel is a continuation of the right end of the upper one.

increases The results of this simplified study indicate that identity mapping networks could be used for r
segmenting continuous speech. One can also envisage using multiple networks to process speech in
parallel. A network trained on identity mapping could be used to locate syllable boundaries; an error
minimum could then be used to activate analysis by a second network that had been trained to do
phonetic labeling.

We have seen that identity mapping can be used to learn salient features without labeling and may
also be useful in segmenting speech. But we are limited by the need to presegment the input for train- .-
ig purposes. This is an undesirable limitation because it requires a teaching environment that may be ".'-
richer than that available to the human learner. In the next section we try to remove the requirement
for presegmentation of the sound stimulus.
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IDENTITY MAPPING OF CONTINUOUS SPECTROGRAMS

The goal in this study was to see what sort of representation might result if a network were trained
on continuous speech. As in the previous study, the task is to identity map the input. In this case, we
drop the restriction that the input must correspond to a CV syllable. Instead, the speech input consisted
of a corpus of 15 minutes of running speech. A text was created that contained (a) the digits from 0 to
9, (b) the 500 most frequent words from the Kucera-Francis corpus (Kucera & Francis, 1967), (c) a
phonetically balanced word list of 100 items, and (d) a prose passage. The corpus was read in a
conversational manner by a male speaker at a moderate rate under relatively quiet conditions, filtered at
3.5 kHz, and digitized at a 10 kHz sampling rate. The speech was hamming-windowed and analyzed
by a 128-point FFT using overlapping windows that advanced 64 points per frame. The power spectra
were reduced to 32 frequency bins, normalized, and squashed in a manner similar to that described

* above.
The network was made up of three layers; the input layer contained 640 units, the hidden layer had 8

units, and the output layer contained 640 units.
Given the magnitude of the corpus, the computational requirements of learning such a database to an

acceptable level of error are considerable. Pilot studies ran for approximately 2 weeks on a VAX
11/750 digital computer (with FPA). For this reason we carried out further studies on the Cray XMP-4
computer of the San Diego Super Computer Center.

The network was trained on the corpus for 1,000,000 learning cycles. We experimented with two
modes of presentation. In one mode, the speech was passed through the input layer of the network in a
continuous fashion; after each learning cycle the input layer of the network was advanced by one time
interval so that there was considerable overlap from one cycle to the next. In the second mode, a sec-
tion of the corpus was selected at random for identity mapping; eventually all possible (overlapping)
portions of the utterance were seen by the network. In pilot work, we found no differences between the
two modes; the random mode is the one we adopted for our studies.

At the completion of the learning phase, the network had been trained on an extensive body of
speech. The speech corpus contains approximately 140,000 different input patterns (each pattern con-
sisting of 640 numbers). Our hope was that this sample was both representative of the variety of
speech patterns for the speaker, while at the same time containing enough regularity that the network
would be able to successfully encode the patterns. One graphic view of the representation that is built
up is shown in Figure 7. At the bottom of the figure we see a spectrogram of a section of the training
corpus. Shown above it are eight lines that graph the activations of the hidden units when the speech
shown at the bottom is passed through the network. These plots can be thought of as a kind of feature
representation of the speech. It is clear that features have steady-states that last for roughly syllable-
sized periods of time. It has proved difficult, however, to give an interpretation of the content of these
features. An important question is how much information has been preserved by the encoding contained
in the eight hidden units. One can test this by seeing whether it is possible to teach a network the
phonetic labels for speech sounds when we use the hidden unit representation of the identity mapped
speech rather than the speech itself. This involves two steps. First, we take the nine CV syllables used
before, pass them through the network previously trained on the Cray (using the 15-mninute speech
corpus), and then save the hidden unit activations that result. In the second step, we use the hidden unit
activations to train a second network to label the activation patterns as [ba], [bi], [bul, etc. This step is
analogous to the previous labeling studies, with the important difference that the input now is not
speech but the representation of speech derived from the Cray-trained network. The labeling network

d had 560 input units (to accommnodate 70 time slices, each time slice lasting 6.4 ms and being
* represented by eight hidden unit values), 8 hidden units, and 9 output units. The nine output units were

used to encode the nine different syllable types.
After approximately 100,000 learning cycles the hidden unit activity of the labeling network had a

reasonably distinct pattern that distinguished the nine different syllables. A more rigorous test is to see
how many categorization errors are made by this network. There is an overall error rate of 13.5% (false
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each value representing an A/D converter voltage, with samples occurring at 100 microsecond intervals.
The network was made of 50 input units, 20 hidden units, and 50 output units. As in the previous
experiment, random sections of the corpus were selected and presented as input and target for identity
mapping. Since each such section contained 50 samples, the network's input window covered 5 ms of
speech.

The use of pulse code modulated (PCM) speech in identity mapping makes it very easy to test the
network's performance simply by collecting the output and converting it back to analog form. This
requires that the output layer contain linear units; so, while the hidden layer remained nonlinear, the
output layer was linear.

After one million learning cycles, we froze the weight values and fed the whole training data set
through the network as a sequential stream of nonoverlapping 50 sample inputs. The output was con-

* verted to analog form and played over speakers. The result was high-quality speech; spectrograms of
both the input and output are shown in Figure 8.

We were interested in seeing how well the network weights would generalize to novel speech. To
test this, we retrained the network using 4 minutes of the full speech data base that was used in the
Cray training study (but in PCM form, rather than as power spectra). We reasoned that this larger and

* more varied training set would be needed in order to learn features that would have general applicabil-
ity. Learning proceeded for one million cycles, using the same presentation method as with the simple
sentence. It is worth noting that because this data set contained 2.5 million different 50-sample patterns
less than half the data was seen, and any pattern that was presented was typically seen only once.

The resultant network was then used as a filter for the original neural network sentence. A spectro-
gram of the output is shown in Figure 9; it is somewhat degraded compared with the filter that is
trained on the sentence itself, but is still quite understandable.

One natural question to ask is what kind of encoding the hidden units have discovered. In Figure 10
we see spectrograms of the outputs of the individual units in response to the neural network sentence.

* It is clear that the responses do not resemble single sines or cosines, showing that the units have not
* learned a Fourier decomposition. One thing that is striking is the extent to which the hidden units'

spectral responses are- similar. If one compares the spectrogram of the input sentence itself (Figure 8)
with those of the hidden units, one sees the way in which this is so. Most of the hidden unit response
frequencies tend to center around the regions of the spectrum that are relevant for speech (this is not the
case for all units; there are some that are distinctly different). The units have thus concentrated mainly
on those area.s of the spectrum that are relevant for encoding the speech data. The results obtained here

OUTPUT w i l

FIGURE 9. Spectrogramns of both the input and output a network trained to identity map PCM speech.
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FIGURE 9. A spectrogmm of the outpit of the network of Figure 8 given as input the "aeunl nework" sentence that it had never *

with sound are analogous to those found for visual images by Cottrell, Munrn, and Zipser (in press).
Since these authors were able to demonstrate considerable bandwidth compression using the hidden unit
representations, we would expect that bandwidth compression has also occurred for sound.

The time scale of the hidden unit features is quite short (the features encode events on the order of 5
ms). We are primarily interested in features, but also in representations that encode larger events.
Therefore, we constructed a second level network that took as its input the hidden unit representation
derived from the first network and identity mapped it to an output layer. This second network had 400
input units, 10 hidden units, and 400 output units. It was able to look at representations corresponding
to 100 ms (i.e., it saw 20 groups of 20 hidden unit inputs at a time, and each group of 20 hidden units
came from 5 ms of speech in the first network).

The first network in this two-level system was the one trained on the extended speech corpus, and
had its weights fixed. It was given a repeated sequence of nonsense syllables, [bal [bal [bal [bal (in
PCM form), as a continuous stream of nonoverlapping 5 ms inputs. Every 5 ms the 20 hidden unit
activations from this first network were passed to the input layer of the second network. After 400
such units had been collected by the second network, it did one cycle of learning in an identity map-
ping mode. On each succeeding learning cycle the input pattern in the second network was shifted left
by 20 units, and a new 20 units were received from the first network. This sequence of events contin-
ued until approximately 800,000 learning cycles had occurred in the second network (remember that the
first network had already been trained and was not subject to learning; it was simply acting as a pre-
processor that formatted the speech in a manner analogous to the FFT used previously).

After the second network was trained on the hidden unit representations, we froze the weights in the
second network. We then ran the input through both networks in a continuous stream. As we did this,
we examined the pattern of 10 hidden unit activations in the second network. These hidden unit pat-
terns indicate the syllable onsets. Our goal now is to explore the usefulness of this higher level of
representation for recognizing larger sets of speech units, although at this point we remain noncommital
about what those speech units will be.

CONCLUSION

The series of experiments reported here are clearly preliminary in nature. There are a large number
of questions that are raised by this work, and it is easy to think of many alternative ways of posing the
problems we have presented the networks. Nonetheless, we find this approach to discovering the hidden
structure in speech exciting for a number of reasons.

Power. The domain of speech processing is an extremely difficult one. There are a large number of
problems of both practical and theoretical nature which remain unsolved. We believe that the experi-
ments described here demonstrate that the PDP framework and the back-propagation method for learn-
ing are extremely powerful.

.. ... ..... ,,;, .. : ..... .. : .:. -, .,. :, .2.-.., . .- -. :.- ..%. . . . .



16 ELM aNd ZIPSt

:-,,

P - " . j CA ".I

FIGURE 10. Spectrograms of the outpuLs of the 10 (of the 20) individual hidden units, from the network of Figure 9, in response
to the "neural network' sentence.

In the frst labeling study we saw that it was possible to build a system that could be taught to
correctly categorize a number of highly confusable phonetic segments; and that having learned this, the
network was able to generalize the categonzation to novel data. We are optimistic that the
performance-which was good-can be improved with refinements in the technique. We are particu-
larly impressed with the fact that an encoding was found in which one hidden unit became active when-
ever an alveolar stop was presented, regardless of vocalic context, and of another which did the same
for velar stops. It is well known that both of these consonants exhibit a great deal of contextual varia-
bility, and the spontaneous discovery of an invariant feature is surprising and gratifying.

Representations. An important goal in this work was to study the representations that result from
applying the back-propagation learning algorithm to speech. We feel this is an important area, which
we have just begun to study. In some cases the representations that are discovered are intuitively sensi-
ble and easy to interpret. In the labeling studies the ConsonantVowel distinction was encoded by a
single unit. In other cases we saw that the representation itself assumed a distributed form, with groups
of hidden units participating in (for example) the encoding of place of articulation. It is interesting that

-S
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the specific representations may vary when learning experiments are replicated. This suggests that mul-
tiple networks learning the same data rr. y provide a richer representation than any single network.
Finally, we saw in the PCM identity mapping studies that the algorithm finds solutions that are highly
expedient. The spectral decomposition that was carried out was clearly tuned for speech; the majority
of units had responses that focused on several regions of the spectrum, and these were precisely those
regions that are highly relevant for speech.

Innate vs. learned representations. We do not believe that the work described here necessarily
makes strong claims that the perceptual representations by humans are learned. On the other hand, we
believe that the work does argue against making strong claims that such representations must be innate.
The tendency, in linguistics perhaps more than psychology, has been to assume that much of the
representation apparatus used in processing language must be learned. In large part, that is because it
has seemed to many people that the representations are complex and often arbitrary and that the input
data available to the language learner for those representations is impoverished.

We feel that this study encourages the belief that more information about the structure of speech is

extractable from the input than has been supposed. The back-propagation method of learning may not
in fact be what is used by humans. Still, it at least demonstrates that one relatively simple algorithm
does exist that is capable of uncovering a great deal of structure in a small sample of speech. It is our
hope, based on these preliminary studies, that it will be possible to construct a hierarchy of learning
networks that will spontaneously learn to recognize speech using only extensive examples of input
speech, loosely synchronized with transcribed text. We further hope that this task can be accomplished
in such a way as to shed light on the actual mechanisms used by the brain. . -
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